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Abstract. The EISPACK routine TINVIT is an implementation of inverse iteration for computing
E genvectors of real symmetric tridiagonal matrices. Experiments have shown that the eigenvectors
computed with TINVIT are numerically less accurate than those from implementations of Cuppen's
divide and conquer method (TREEQL) and of the QL method (TQL2). The loss of accuracy can
be attributed to TINVIT's choice of starting vectors and to its iteration stopping criterion.

In this paper, we introduce a new implementation of TINVIT that computes each eigenvector
from a different random starting vector and performs an additional iteration after the stopping
criterion is satisfied. We present a statistical analysis and the results of numerical experiments
with matrices of order up to 525 to show that the numerical accuracy of this new implementation
is competitive with that of the implementations of the divide and conquer and QL methods.
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1 Introduction

It is our goal to determine an accurate method for computing all eigenvalues

and eigenvectors of real symmetric tridiagonal matrices that is efficient both

sequentially and in parallel. Experimental results in [13, 14] indicate that bi-

section with inverse iteration is generally the fastest and most efficient paral-

lel eigensolver on a distributed-memory hypercube multiprocessor such as the

INTEL iPSC and that it is also the fastest sequential method for many prob-

lems. The comp;,f-d eigendecompositions, however, are less accurate than those

computed by existing implementations of Cuppen's divide and conquer method

(TREEQL) [4, 10] or the QL method (TQL2) [2, 19]. The tested implemen-

tations of bisection are based on the EISPACK routine BISECT [19] which

produces eigenvalues to high absolute accuracy (19] and which with minor mod-

ification would produce eigenvalues to high relative accuracy [6]. The loss of

accuracy can thus be attributed to the tested implementation of inverse iter-

ation (EISPACK's TINVIT). In this paper, we identify the factors influencing

the accuracy of inverse iteration and present a new implementation of inverse

iteration that computes eigenvectors to high absolute accuracy.

Suppose that T is an n x n real symmetric tridiagonal matrix with eigende-

composition

T = UAU
T , A= .. ), U = (ul ... U.

where the diagonal elements A are the eigenvalues of T and the column ui

of the orthogonal matrix U is the eigenvector associated with eigenvalue A,.

Given an accurately computed eigenvalue Aj, inverse iteration computes the

corresponding eigenvector uj by performing the power method with thc shifted

matrix (T - I):



Algorithm 1.1 (Inverse Iteration)

Select a starting vector y(O).

For k = 1, 2.... until convergence:

Solve (T-AjI)y(k) = y(k1) for (k)

-a =  Y(')/ll I (k) 112

Representing the starting vector y(0) as a linear combination of the eigen-

vectors y(O) = =juj gives for the first iterate y(') = " If the

contribution 77j of uj in y(O) is not too small and if Aj is close to Aj, the contri-

bution qj/(Aj - Aj) of uj in the next iterate y(l) is large, and y(') is a better

approximation to uj than is y(O) (21I, p.321. Likewise, in the next iteration, the

contribution of uj in y(2) increases to 7qj/(Aj - Aj) 2 and so on for subsequent

iterations. Thus, the iterates y(k) usually converge to uj in only a few iterations.

If all eigenvalues are well-separated and if the starting vector in each eigen-

vector computation contains a large enough component i7/, inverse iteration

using shifts Al, ... , A in turn computes an orthogonal set of eigenvectors. How-

ever, if some eigenvalues are close together, inverse iteration as outlined in Al-

gorithm 1.1 produces eigenvectors that are not orthogor q. ' additional step

to orthogonalize iterates associated with close eigenvalues f .n necessary.

This discussion of the inverse iteration algorithm shows that if the eigenval-

ues Ai are determined to working precision (which is true for BISECT) and if

the linear system solution and the orthogonalization of iterates corresponding

L, cise eigenvalues are carried out accurately (which is true for TINVIT), the

overall accuracy of inverse iteration is dternriincd by:
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1. the choice of starting vector,

2. the reorthogonalization criterion, and

3. the iteration stopping criterion.

We will examine the EISPACK routine TINVIT with regard to, each factor in

turn and gradually improve its accuracy to that of the implementations of the

QL and Cuppen's divide and conquer methods. The numerical experiments

involve matrix orders up to n = 525, and the conclusions drawn from them

therefore may not apply to much larger matrix orders.

This paper is organized as follows. A simple perturbation result is presented

in Section 2 to define measures of high absolute accuracy for the computed

eigenvalue decomposition. The EISPACK implementation TINVIT is described

in Section 3, and its lack of numerical accuracy explored in Section 4. A new

implementation of inverse iteration based on the experiments in Section 4 is

presented in Section 5. The numerical accuracy of this improved implementation

is compared to implementations of Cuppen's divide and conquer method and

of the QL method in Section 6. The use of random starting vectors in the

new implementation of inverse iteration is justified by a statistical analysis in

Section 7.

2 The Computed Eigendecomposition

This section shows that the computed eigendecomposition has high absolute

accuracy if its residual and the deviation of the eigenvectors from orthogonality

are small.

Suppose that the diagonal elements of A are the eigenvalues of T - UAUT

in descending order

3... 2
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and that the column ui of the orthogonal matrix U is the eigenvector associated

with Ai satisfying 11 ui 112 = 1. The spectral radius of T is denoted by

AI.m.a= max{IA11, JA.I}.

It is further assumed throughout the paper that the matrix T is unreduced,

that is, that none of the immediate sub- or superdiagonal elements of T is

zero. Otherwise, the matrix would consist of a direct product of disjoint, lower

order matrices whose eigendecompositions can be computed independently [21],

p.315. Although an unreduced tridiagonal matrix has distinct eigenvalues in

exact arithmetic, it may still have computationally coincident ones in finite

precision.

Assume that the computed eigenvalues satisfy the same order as the corre-

sponding exact eigenvalues, i.e.,

The accuracy of the computed eigendecomposition &TACUT of T is then deter-

mined by the largest residual error R of any computed eigenpair and by the

deviation from orthogonality 0 of the computed eigenvectors:
__1

R =1,max 11 Tfii - Aiti 112 , O 1J1 Tr - I111.
I Alma. :S i

The particular norms for TR and 0 were chosen because they are convenient to

analyze and to compute. The outcome of the numerical experiments in the later

sections does not change if the matrix norm 0 is replaced by the vector norm

max,<i<. 11 (&& - I)ei loo. Our analysis is restricted to the above norm-based

criteria; other quality measures that are applicable when T is known to very

high accuracy are discussed in [1, 5, 6, 7].

4



Lemma 2.1 If V is a square matrix and

E= VTV- I, E VVT - I

then !1 E !! = I E 112.

Proof. Let V = YEX T be the singular value decomposition of V, then

VTV I = XF 2XT - I = XE 2 XT - XXT = X( 2 - I)XT.

Similarly, VVT _ I = y(E2_ I)yT. Because X and Y are orthogonal matrices,

11 E 11 = II VV - r 112 = II VVT - 1 112 = II R 112.

Theorem 2.1 below shows that the computed eigendecomposition U_-AUT

is the exact eigendecomposition of a matrix T + E close to T if residuals and

deviation from orthogonality are small. The error matrix E is in general neither

symmetric nor tridiagonal.

Theorem 2.1 Let UAUkjT be the computed eigendecomposition of a symmetric

tridiagonal matrix T and let

' = I max 11 Tfi1 - a,, 112, 0 = 11 &T& -- 111..
IAImax I<i<n

If R? < c and 0 < f2, then there exists a matrix E such that

T + E = (3(T
,  II E 112 5 vn' ( AImazE2 + IA maxei l-+vFnc2) ,

where Almo = max{Il[j, iAj}.

Proof: Let
1

E (TO - ), E 2 =UTU-I, ' 2ff p2
IAlmax
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Because for any n x n matrix A, 11 A 112 < v'nmaxi<<, 11 Aej 112 [11], where ej

is the ith canonical vector,

1I El 112 _ V"n Ma II Eje, 112 = /ui < /i,

11 E2 112 _ v II E 2 1 -V O S V 2.

Lemma 2.1 is now used to bound 1I OJT 112:

V"C2 >_ 11 E2 112 = II 2 112 =II C-)T - 1112 _ I C5CJ 112 --II 11 0 It - 1,

where the last equality follows from 11 ATA 112 = IAII . Therefore, 110II 2

1+ V/-C2.

From the definition of El,

so that

&(, j T = TUOT - PImasEUT = T(I +.E 2 ) - IImarEl OT = T+ E,

where E = TE2 - IAIm.El "OT, and

11 E 112 < IAim,, I 1 '2 112 + Illma.l El 11 112 JT  112

< vx/ t, lma.,2 + IAl,,aoi 1 + V"e) ).

Under the assumptions

II TO - 0 12  C, 1 II12 -I < E2 ,

the error matrix is bounded above by

II E 112 -< IAi.,C2 + V'IV + C2,

which is independent of the matrix order.
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3 The EISPACK Routine TINVIT

The steps for computing all eigenvectors of an unreduced symmetric tridiagonal

matrix T by inverse iteration are given in Algorithm 3.1:

Algorithm 3.1 (Basic Implementation of Inverse Iteration)

For j = n, n - 1,..,:

1. Choose a starting vector yj.

2. Solve (T - j I)zi = Yi for zj.

3. If the reorthogonalization criterion is satisfied,

orthogonalize zj against iterates associated with computed eigenvalues

close to A1 .

4. If the slopping criterion is not satisfied,

set yj = :j and go to step 2.

5. The computed eigenvector is fsj = zj/11 zi 112.

As suggested in [20], p.143 and [21], p.329, the EISPACK implementation

TINVIT performs the linear system solution in step 2 by Gaussian Elimination

with partial pivoting and the orthogonalizations in step 3 by the modified Gram-

Schmidt algorithm. Because TINVIT yields less accurate eigenvectors than do

existing implementations of the QL method (TQL2) [2, 19] or Cuppen's divide

and conquer method (TREEQL) [4, 10], the loss in accuracy must be due to

one or more of the following three factors: the choice of starting vector, the

reorthogonalization criterion, and the stopping criterion. TINVIT deals with

these issues as follows.
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3.1 The Starting Vector

As argued in Section 1, a good starting vector yj has a large enough contribution

of an eigenvector associated with the current eigenvalue Aj to yield an iterate

with dominant components in the eigenspace associated with Aj.

Without advance knowledge of the eigenvectors, however, it is difficult to

ensure a high quality starting vector. For instance, the canonical basis vectors

el and e,, should not be used as starting vectors because they are often nearly

orthogonal to some eigenvectors of a symmetric tridiagonal matrix T [20], p. 147.

The vector of all ones is also a poor choice as it is orthogonal to half of the

eigenvectors of a symmetric tridiagonal Toeplitz matrix [12].

Analytic determination of a good starting vector is complicated by the role

of roundoff error in inverse iteration. As shown in [18, 20, 21, 22], one or

two iterations in finite precision arithmetic are generally sufficient to produce a

significant iterate component in the correct direction unless the starting vector

is exactly orthogonal to that direction.

In agreement with [20], p.147, TINVIT avoids explicit formation of the

starting vector yi as follows. The tridiagonal system (T - Aj I)zj = yi is

solved by using Gaussian Elimination with partial pivoting to factor the matrix

T-Aj I = Lj Uj. (Throughout this paper, we disregard the permutation matrix

for simplicity). The vector yj is chosen so that the result of the forward substi-

tution equals e, the vector of all ones. That is, the computation L. e = yj need

never be carried out, and the solution of the first linear system in each eigen-

vector computation amounts to solving only the second of the two triangular

systems Ujzi = e.

When computationally coincident eigenvalues (i.e., eigenvalues that are iden-

tical to working precision) are used as shifts, their iterates converge to a single
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eigenvector and fail to span the whole eigenspace. However, these iterates are

very sensitive to the value of Aj [21], p. 3 2 9 . Wilkinson suggests that the com-

putationally coincident eigenvalues be slightly perturbed so as to make them

distinct and that inverse iteration be used with the perturbed eigenvalues to

produce iterates that are linearly independent. The increased distance of Ai,

Ai+k from Ai should affect only the speed of convergence and not the accu-

racy of inverse iteration (21], p.329.

TINVIT replaces computationally coincident eigenvalues A, = AJi.1 = =

A,-k by

A, < A + MIITIIR < .. < A, + (k - 1)em.lTIlR,

where cM is machine epsilon, and

11 T IlR =- max {lckjl + JljIl

for a matrix T with diagonal elements l,..,a, and off-diagonal elements

32, .. . , and 31 - 0. An unreduced tridiagonal matrix T satisfies 11 T hJR <

11 T II.

3.2 The Reorthogonalization Criterion

The above strategy for perturbing computationally coincident eigenvalues is in-

tended to produce computed eigenvectors that are linearly independent. To

assure orthogonal computed eigenvectors, the iterates associated with close

eigenvalues are reorthogonalized against each other. In TINVIT, two adjacent

eigenvalues A, and A,+1 are considered close if

-j - A,+l < 10-311 T Ila.

The process of reorthogonalizing the iterates is different in sequential and par-

allel implementations and proceeds as follows.
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In a sequential implementation the eigenvectors are computed successively,

according to the ascending order of the eigenvalues. That is, at the time of

computation of , j, the compu+ation of the eigenvectors fij+1 , ... , fl" has al-

ready been completed. If a computed eigenvalue Aj is close to the computed

eigenvalue Aj+i then the iterate zj is reorthogonalized against t i+t and against

all eigenvectors, against which j+i was orthogonalized.

In the parallel implementation of [13] all iterates z, associated with a set of

close eigenvalues are computed simultaneously in lock step. If Aj is close to Aj+i

then the iterate zj is orthogonalized agai.ast z +1 and against all iterates, against

which zj+l was orthogonalized. Although the sequential and parallel implemen-

tations could have been based on identical algorithms, the orthogonalization of

zj against the intermediate iterates zi is used in the parallel implementation to

allow pipelined reorthogonalization of eigenvectors (13].

In the outline of TINVIT below, the data structure CLUSTER(i) contains

the indices i + 1,..., i + k of all tho3e vectors, against which zi must be orthog-

oi1alized.

3.3 The Stopping Criterion

In [20], p.145, Wilkinson shows that if an iterate zj has a large norm after

reorthogonalization but before normalization, the eigenpair (A,, zi) has a small

residual error. Specifically, the !2irge iterate norm EMjZj 112 = f2(n - 1/2 ) leads to

the small residual I(T- AI)zj 112 = O(cMn- /2) [20], p.145. Furthermore, the

large norm of z1 (after reorthogonalization) indicates that the iterates associated

with Ai . A-, were linearly independent (before reorthogonalization) so that

the computed eigenvector ij = zj/11 zj 12 is orthogonal to flj+t .. fl, (The

connection between lar iterate norm and successful orthogonalization by the

modified Gram-Schmidt procedure is demonstrated in Section 4.1).
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From the perturbation result in Section 2 we can then conclude that (Aj, z,)

is an eigenpair of a matrix close to T and hence that z1 is an accurate eigenvector.

Because 1Jzj112 t> z1 Zf 11o, the two-norm can be replaced by the cheaper infinity

norm for convergence testing. Thus, if ii yj 11o. = 1 and eMIl z 11.o, > 1, then

zi is a good eigenvector approximation. The difficulty lies in determining just

how large 11 zi 11. should be. TINVIT stops iteration if eM[l z 11.c I (ignoring

scaling factors).

3.4 Implementation of Inverse Iteration

A sketch of the EISPACK routine TINVIT is given as Algorithm 3.2 below. Nu-

merical details such as scaling factors used to prevent overflow are not included.

The computed eigenvalues are in descending order A1 > ... > , 1, and cM is

machine epsilon.
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Algorithm 3.2 (Outline of TINVIT)

Forj=n,n-1...,1

0. Perturb computationally coincident eigenvalues:

if j < n and A, - 0j.x < 0, then replace A, with ,i+ + EMil T IIR.

1. Initialize the set of eigenvalues close to Aj: CLUSTER(j) = 0.

If j < n and A, - A,+1 < 1O-'ll T IIR, then

CLUSTER(j) = CL USTER(j + 1) U {j + 1}.

2. Initialize the iterate norm o'j = 0.

3. Loop until eMoJ 1 (error exit after 5 iterations).

3.a Factor (T- AI) = LU,.

3,b If this is the first iteration, solve Ujzj = c,

otherwise solve L1 Uj zi = yj.

3.c Sequential implementation:

Reorthogonalize zi against all ui with i E CL USTER(j).

Parallel implementation:

Reorthogonalize zi against all zi wzth i E CLUSTER(j).

S.d Set o,- =1 z, ill and yj = zj.

4. The computed eigenvector is fy = yi/I yi 112.
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4 Experimental Results

The experimental results in [14] show that TQL2 or TREEQL generally yield

residuals 1Z = maxi 11 Tfij - ifij 112 less than 10- 14 for matrix orders n < 525;

and deviations from orthogonality 0 = 11-&T6U _ I IIj' less than 10 - 1 4 for n -

32, less than 10- 13 for n ; 100, and less than 10-12 for n ;s 512 (a similar

dependence on the matrix order occurs when the deviation from orthogonality

is instead measured by 0 = max, 11 (6TTU - I)e, 112). The EISPACK routine

TSTURM (a combination of BISECT and TINVIT) yields respective residuals

RZ less than 10 - 14 , less than 10-13, and less than 10 - 12 and orthogonality

measures 0 less than 10- 12, 10- 11, and 10- 1' for matrix orders 32, 100, and

512, respectively.

The numerical experiments in this section were designed to determine which

features of TINVIT need to be modified so that it is at least as accurate in prac-

tice as the QL routine TQL2 [19] and the divide and conquer routine TREEQL

[101. All experiments were performed in double precision on a single Sequent

Symmetry S81 processor using the Weitek 1167 floating-point accelerator. The

eigenvalues were computed with the EISPACK routine BISECT to working pre-

cision. Because we tested only matrices up to orders of n = 525, our conclusions

may not apply to much larger matrix orders.

This paper presents representative results selected from the ones in [14]. The

first test matrix [1,2,1] illustrates the case of matrices without close eigenvalues.

The matrix [1,2,1] is a symmetric tridiagonal Toeplitz matrix of order n having

twos on the diagonal and ones on the first sub- and superdiagonals. Its exact

eigenvalues are well-separated and given by [12]

A= 2 1+Cos , I < j : n.
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For matrix orders n < 525, the computed eigenvalues )q are also well-separated.

The second test matrix is the 'glued Wilkinson matrix' W + and represents

one of the most difficult test cases for dealing with groups of close eigenvalues.

It is constructed as follows. The 'Wilkinson matrix' W2+ of order n = 21 has

diagonal elements 10,9,..., 1,0,1,..1.9, l0and immediate off-diagonal elements

equal to one. It possesses pairs of eigenvalues that are very close [211, p. 3 0 9 .

The spacing between eigenvalues in a pair decreases with incrCasing magnitude

of the eigenvalues, and the eigenvalues in the largest pairs are computationally

coincident with regard to double precision. The glued Wilkinson matrix W + of

order 21j is formed by placing j copies of Wj along the diagonal of the matrix

and setting off-diagonal elements equal to 10-14 at the positions /021, /342,...

where the submatrices join. For.matrix orders n > 200, W + has clusters of

eigenvalues near the integers 1, 2,..., L J [17].

The conclusions drawn from numerical experiments with these two matrix

types are supported by tests on random matrices in [14].

4.1 Starting Vectors

In this section, we examine the influence of the starting vector on the accuracy

of inverse iteration and on the number of iterations performed. To this end, we

use the following vectors as starting vectors for the computation of fij:

1. the 'correct' eigenvector fj: this starting vector is the eigenvector fj com-

puted by inverse iteration with a random starting vector. Each starting

vector ul, ... , u,1 has residuals R < 10 - 14 for all orders and orthogonal-

ities 0 < 10 - 14 for n < 42, 0 < 10 - 13 for n < 105, and 0 < 10 - 12 for

n < 525.
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2. f + TrUj: this linear combination of fs,, and fij is used as starting vector

to compute fj for 1 _ j : n - 1, and a random starting vector is used to

compute fn. When r = 0 and An-_I > A,, fin + rtj is roughly orthogonal

to the eigenvectors associated with A, ..... , A- 1. Increasing the value of r

amounts to increasingj.he contribution of the desired eigendirection in the

starting vector and thus determines the minimal size of the contribution

that is sufficient for convergence.

3. random vectors: these vectors have uniformly distributed pseudorandom

components between -1 and I generated with the linear congruential ran-

dom number generator from NETLIB. For each matrix order n, a single

n x n random matrix is generated. In one set of experiments, we use

the first column of this matrix as the starting vector for all eigenvectors.

In the second set of experiments, we use column j of the matrix as the

starting vector for the jth eigenvector.

4. the TINVIT starting vector yj: this starting vector is not computed explic-

itly. Instead it is assumed to be the right-hand side of the lower triangular

system Lj e = yj, where e is the vector of all ones, and T - A, I = L, Uj is

the LU decomposition (disregarding the permutation matrix).

For the purposes of this section, TINVIT was modified to perform the same

number of iterations for all eigenvectors. Iteration was continued until the

required accuracy was achieved but for not more than five iterations. Compu-

tationally coincident eigenvalues were perturbed as in step 0 of Algorithm 3.2

except when different starting vectors were used for each shift. For different ran-

dom starting vectors, the rate of convergence and accuracy of inverse iteration

are preserved even if computationally coincident eigenvalues are not perturbed,
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that is, even if step 0 of TINVIT is omitted. The following two sections distin-

guish between the experimental results for the cases of well-separated and close

eigenvalues.

4.1.1 Starting Vectors for Matrices with Well-Separated Eigenvalues

Table 1 shows the number of iterations required by inverse iteration to compute

the eigenvectors to the same accuracy as TQL2 or TREEQL for each type of

starting vector.

High accuracy is achieved in one iteration only when accurately computed

eigenvectors fQj are the starting vectors. More than two iterations are needed

only for larger n and only when the starting vector is orthogonal or nearly

orthogonal to the computed eigenvector (r < 10-16). All other starting vectors

require two iterations.

Thus, for matrices [1,2,1] of order n < 512, a starting vector component qj

of magnitude 10' in the desired direction uj suffices for rapid convergence,

i.e., two iterations. Performing more iterations than listed in Table 1 does not

significantly change the accuracy. These results are supported by numerical

experiments on random matrices with minimal eigenvalue spacing of 10- 4 [14].

In summary, when all eigenvalues are well-separated the performance of in-

verse iteration does not strongly depend on the starting vector: random starting

vectors and the TINVIT starting vector provide a large enough component in

the desired direction for fast convergence.

4.1.2 Starting Vectors for Matrices with Groups of Close Eigenval-

ues

Table 2 shows the number of iterations for the glued Wilkinson matrLx W + with

n = 42, 105, and 525 for the different starting vectors. As for matrix [1,2,1],

16



n =32 n =100 n =512
number of number of number of

starting iterations for iterations for iterations for
vector It < 10-14 RZ < 10-14 V < 10-14

o < 10-14 0 < 10-'3 o < 10-12

fii 1 1 1

fn2 2 4

f~ + 10- 16
ai3  2 2 3

fini + 10-sij 2 2 2

fn+1-f 2 2 2

same random 2 2 2

different random 2 2 2

TIN VIT 2 2 2

_______________________________ I_________________________ _______________________

Table 1: Number of inverse iterations to compute eigenvector i for matrix
[1,2,1] of order n. The same number of iterations is performed for each f~,.

17



accurate eigenvectors are produced in one iteration only when the starting vector

is the eigenvector. Two iterations suffice when the starting vector has a correct

component of size at least 10- 8 or when a different random starting vector is

used for each eigenvector. The remaining starting vectors require more than two

iterations. For n = 525, inverse iteration does not converge in five iterations

when the iterations are started with fin, fin + 10-1 6 ij or with the TINVIT

starting vector.

Table 3 illustrates the connection between the convergence rate of the iterates

and their linear dependence for different types of starting vectors and the matrix

W+ . The numbers in Table 3 were obtained as follows. The iterates zj, 1 <

j < n, before the reorthogonalization step 3.c in the first iteration of TINVIT

compose the columns of an n x n matrix. The smallest singular value of this

matrix is listed in the first column of numbers, and the smallest norm ay attained

by the zi, 1 < j :_ n, after reorthogonalizing in step 3.c is listed in the second

column of numbers. The same information is given for z1 in the second iteration

of TINVIT in the last two columns. These data show that except in the case

of different random starting vectors, the iterates after the first iteration are

linearly dependent. Thus, the modified Gram-Schmidt procedure breaks down

and produces vectors that are almost zero. Likewise, the second iteration fails

to produce linearly independent iterates for all but the different random starting

vectors. (The singular value for the matrix of iterates from the same random

starting vector is so small, 10-1, that the iterates can be considered numerically

linearly dependent).

While the T'J VIT starting vectors are difficult to analyze, the other choices

suggest a possible correlation between linearly dependent starting vectors and

iterates: linearly dependent starting vectors lead to linearly dependent iterates

18



n =42 n =105 n =525
starting number of number of number of
vector iterations for iterations for iterations for

___________ 0 < 10-14 0 < 10-1 3  0 < 10-12

fin 3 3 > 5

fl 0'fi3 3 > 5

fin + 10-"fj 2 2 2

fin + 10-2 i 2 2 2

same random 2 3 3

different random 2 2 2

TINVIT 2 3 > 5

Table 2: Number of inverse iterations to compute eigenvector fi2 for the glued
Wilkinson matrix W+of order n. The same number of iterations is performed
for each fii.
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smallest minimal smallest minimal
starting vector singular iterate norm singular iterate norm

value of minj 11 zi Ij,[ value of min 11 zj
first after second after

iterates one iteration iterates two iterations

0 0 0 1.24d- 13

sarre random vector 0 4.69d - 12 10 - 18 7.04d - 04

different random vector 0.02 4.94d - 04 0.08 > 1.00

TINVIT 0 4,94d- 12 0 1.06d- 12

Table 3: Singular values of the matrix of iterates and smallest iterate norm
for the glued Wilkinson matrix W+ of order n = 525 after one and after two
iterations of TINVIT.
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matrix order smallest singular value
42 .0362
100 .0341
105 .0198
512 1.d-229
525 .0128

Table 4: The smallest singular value for a matrix of different random starting
vectors.

in the case of computationally coincident eigenvalues. Table 4 shows that the

smallest singular value for a matrix composed of n different random starting

vectors is much larger than zero; the only exception is n = 512 where the 512th

column is linearly dependent on the first 479. Because none of the test matrices

has a group of eigenvalues including both the 479th and the 512th eigenvalues,

inverse iteration starts out with linearly independent random starting vectors

for all iterates associated with the same group of close eigenvalues.

In summary, when a different random starting vector is used to compute each

eigenvector of the glued Wilkinson matrix, both the starting vectors and the

iterates are highly likely to be linearly independent. This correlation between

linear dependence of starting vectors and number of iterations can be observed

to a lesser degree for other large matrices with groups of close eigenvalues [14].

4.2 Stopping Criterion

The experimental results in this section show that TINVIT's choice of stopping

criterion causes inverse iteration to stop before highest accuracy is attained.

We will examine an alternative that consistently improves the accuracy. For

the experiments in this section, TINVIT was modified to compute each eigen-

vector from a different random starting vector and to use unperturbed computed

eigenvalues as shifts.
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matrix iteration minimal maximal deviation from
iterate norm residual orthogonality
mini zj 7z 1 0

[1, 2,1] 1 > 1.00 3.18d - 14 3.05d - 12
n= 100

2 > 1.00 1.58d - 16 3.20d - 14

W+ 1 0.14 1.47d -13 1.68d -1I1
n= 105

2 > 1.00 8.70d - 16 3.85d - 15

[121 1.00 1.60d -1I1 4.62d -09
n= 512

2 > 1.00 3.93d - 16 1.57d - 13

19 4.94d - 04 3.42d - 09 6.02d - 0 7
n= 525

2 > 1.00 5.99d - 15 1.98d - 14

Table 5: Iterate norm, residual, and orthogonality for matrices [1,2,1] and W
after one and after two inverse iterations. A different random starting vector is
used for each eigenvector computation.
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For matrices [1,2,1] and W,, Table 5 shows how the accuracy of the com-

puted eigendecomposition depends on the norm of the computed iterates (after

reorthogonalization in step 3.c of Algorithm 3.2). The TINVIT stopping crite-

rion works correctly for both orders of the glued Wilkinson matrix W+: unit

iterate norm and full accuracy are both attained on the second iteration. It fails,

however, on the matrix [1,2,1] where all iterates have greater than unit norm

but less than full accuracy on the first iteration. The same conclusions can

be drawn from experiments with random matrices in [14]. It seems, therefore,

that at least two iterations should always be performed regardless of iterate

norm when different random starting vectors are used. In other words, after

the iterate norm is large enough and the loop in step 3 of TINVIT is exited,

perform one more iteration. The additional iteration was already suggested in

[21], p.324, but was not implemented in TINVIT.

We have not found a simple correlation between size of the iterate norms

and the number or size of the groups of close eigenvalues.

4.3 Reorthogonalization

For the purposes of this section, TINVIT was modified to compute each eigen-

vector from a different random starting vector and to perform one more iteration

after the iterate norm becomes large enough, i.e., one more iteration after exit-

ing the loop in step 3 of TINVIT. In the numerical experiments below, we vary

the distance at which adjacent eigenvalues are considered to be so close as to

require orthogonalization of the associated iterates.

Table 6 shows the residuals 7 and deviations from orthogonality 0 for ma-

trix [1,2,1] of order n = 100 as the reorthogonalization criterion is varied from

0 to 10lL1 T 11R after one and after two inverse iterations. These data con-

firm that more orthogonalization is not a substitute for extra iterations because
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number one iteration two iterations
criterion of

vectors R 0 R 0
orthog-
onalized

101011 T hJR 99 6.09d-13 6.41d-15 2.12d-16 5.75d-15
(all)

10 1 T 11R 97 1.87d-12 7.40d-15 2.13d-16 6.12d-15

10-211 T 11R 33 7.69d-14 4.97d-12 1.67d-16 1.82d-15

10- 3 11 T HIR 2 3.18d-13 3.05d-12 1.58d-16 3.20d-14

10 1 T hJR 1 1.10d-13 2.75d-11 1.90d-16 4.28d-14

0 0 2.28d-13 2.68d-11 1.61d-16 4.68d-14

Table 6: Accuracy for matrix [1, 2, 1] with different reorthogonalization criteria
when n = 100.

small residuals are not attained until the second iteration even with reorthog-

onalization of all eigenvectors. Table 7 shows th, same situation for W + when

n = 105 and n = 525, as well as the fraction of inverse iteration time spent in

the modified Gram-Schmidt procedure.

Increasing the reorthogonalization criterion beyond that of TINVIT does not

significantly improve the accuracy for matrices [A, 2, 1] and W+ . It can, how-

ever, substantially increase the computation time. With the TINVIT criterion

10-3ITIR, most of the eigenvectors of W,+ are reorthogonalized (80% when

n = 105 and 96% when n = 525), but reorthogonalization occurs in many small

groups. In contrast, with the criterion 101IITlIR all eigenvectors are reorthogo-

nalized as one group, and the cost rises markedly although the accuracy hardly

changes.

These experiments show that the best possible orthogonality can generally
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order criterion R number time fraction
of for MGS

vectors MGS time

n=105 101011 T IIR 1.97d-16 4.57d-15 104 30.6 .67
(all)

10-111 T 11R 1.60d-16 3.14d-15 88 27.7 .10

10-3 1 T 11R 8.70d- 16 3.85d-15 84 1.4 .07

10-511 T 11R 2.09d- 16 2.52d-13 78 1.4 .05

0 1.85d-16 2.05 0 0 0

n 525 101011 T IIR 7.58d-15 1.53d-14 524 5807.1 .98
(all)

10-111 T IIR 4.69d-15 3.5 1d- 14 523 5287.6 .73

10-3 11 T IIR 5.99d- 15 1.98d-14 504 338.1 .15

10-511 T fIR 3.46d- 15 6.24d- 13 498 253.1 .12

0 2.04d- 16 6.38 U. 0 0

Table 7: Accuracy and computation time for VV+after two inverse iterations
with different reorthogonalization criteria when nz = 100 and n = 525. The
last column shows the fraction of reorthogonalization (MGS) time in inverse
iteration.

25



be attained only by the time-consuming process of reorthogonalizing all eigen-

vectors. The accuracy desired here, however, can usually be achieved by means

of the TINVIT reorthogonalization criterion along with different random start-

ing vectors and the improved stopping criterion of Section 4.3.

5 A New Implementation of Inverse Iteration

The improvements to inverse iteration developed in Section 4 are incorporated

into the following algorithm. These changes are based on experiments in Sec-

tion 4 with matrix orders n < 525 and may not apply to much larger matrix

orders.
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Algorithm 5.1 (Improved Inverse Iteration Algorithm (171))

Forj =n, n -1,. .. ,1I

1. Initialize the set of eigen values close to Ai: CL USTER(j) =0

If j < n and A, - Aj+j < 10-111 T 11. then

CL USTER(j) = CL USTER(J + 1) U {i + 1}.

2. Generate a random vector xi with uniformly distributed components

in the interval [-1,1], and form the starting vector yi = xj~j z, 112.

3. Initialize the iterate norm o, 0.

4. Loop until cmoj >! 1 (error exit after 5 iterations).

4. a Solve (T - A11I)zi = y,.

4.b Sequential implementation:

Reorthogonalize zj against all f~, with i E CL USTER(j).

Parallel implementation:

Reorthogonalize zi against all zi with i E CL US TER(j).

4.c Set o, = 11zi 11, and yj= xi.

5. Repeat step 4 once.

6. The computed eigenvector is f~ = y,/II yj 112.

Tables 8 and 9 compare the computation time of the EISPACK routine

TSTURM with that of the EISPACK routine BISECT combined with algorithm

HII (B/111). Because of the additional iterations performed, the computation

time of III is substantially higher than that of TINVIT. For matrix [121 of
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TSTURM B/III

n time to time to time to
compute compute 7 0 compute 0 0

eigen- eigen- eigen-
values vectors vectors

(seconds) (seconds) (seconds)

32 1.1 0.3 4.15d-15 4.00d-13 0.4 1.30d-16 4.27d-15

100 11.3 2.0 2.46d-i4 8.48d-12 3.2 1.56d-16 3.15d-14

512 276.7 72.2 1.26d-13 4.48d-11 125.8 4.11d-16 1.78d-13

Table S: Times, residuals, and orthogonalities for eigensystems computed by
TSTURM and by B/Ill for matrix (1, 2, 1].

order n = 512, however, very little orthogonalization of eigenvectors takes place

(see Table 6), and eigenvector computation is cheap compared to eigenvalue

computation. The longer time of algorithm III represents only a 13% increase

in total computation time for B/Ill over TSTURM.

The storage requirements for algorithm III are the same as for TINVIT.

The time for generation of random starting vectors in algorithm III is small

compared to the total computation time. It constitutes less than 4% of the

total eigenvector computation time for matrix [1,2,1] of order n < 512 and

for W + of order n < 525. A 1000 x 1000 matrix of random elements can be

generated in 14.00 seconds.

6 Comparison with Other Methods

This section offers an experimental comparison of Cuppen's divide and conquer

method, the QL method, and bisection with inverse iteration. The respective
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TSTURM B/IlI

n t;me to tirlAe to r time to 1
compute compute 0 compute 10 0

eigen- eigen- eigen-
values vectors vectors

(seconds) (seconds) (seconds)

42 1.6 0.4 4.25d-15 2.3d-13 0.6 1.61d-16 2.61d-15

105 4.72 3.0 5.11d-14 2.36d-12 4.8 6.98d-16 4.43d-15

525 23.3 171.1 1.14d-13 4.08d-11 333.4 5.55d-15 1.69d-14

Table 9: Times, residuals, and "dthogonalities for eigensystems computed by
TSTURM and by B/IlI for matrix W,.

implementations are TREEQL [10], TQL2 [19], and B/III. TREEQL switches

from divide and conquer to TQ" for subproblems of order n < 50. For a

given problem, the relative speeds of the three methods depend on the degree

of deflation in TREEQL, the amount of matrix splitting in TQL2, and the

clustering of eigenvalues for B/III. Because they illustrate the range of results

for all matrices from [14], we use the three test matrices [1,2,1], Wt, and [1,uJ]

as a basis for comparison. The matrix [1,u,1] has ones in its first subdiagonal and

superdiagonal and the value i x 10-
6 in the ith diagonal position. It undergoes

little deflation when its eigendecomposition is computed by TREEQL. As none

of these test matrices contains row sums of widely differing magnitudes, we

exclude IMTQL2 from the comparison: the performance and accuracy of TQL2

and IMTQL2 are nearly identical for these test matrices [14].

Table 10 shows that the maximal residual 7Z = maxi< <n 11 Tfis - A ji4 j12

and deviation from orthogonality 0 - IT& - I -f1 of the eigendecomposi-

tions computed by the three methods do not differ significantly.
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matrix method maximal deviation from
order residual orthogonality

Iz 0

n = 32 or 42
TREEQL 3.26d-15 5.59d- 15

TQL2 1.52d-15 1.30d-14
B3/I11 1.80d-16 6.20d-15

n =100 or 105
TREEQL 6.07d- 14 2.75d-15

TQL2 2.39d-15 1.06d-14
B3/Ill 3.67d- 15 8.52d-14

n =512 or 525
TREEQL 3.96d-15 1.67d-13

TQL2 1.66d-14 2.50d- 13

B/Ill 6.05d-15 7.92d- 13

Table 10: Maximal residual and orthogonality of eigendecompositions computed

by B/111, TREEQL, and TQL2 for matrices [1,2,1], W,+, [1,u,1].
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As shown in Figures 1-3, however, the computation times for the problems

can differ significantly. The top graphs in these figures show the different com-

putation times for matrix orders n < 60. B/Ill is slowest for matrices [1,2,1] and

[1,u,l] of order n < 20. TQL2 is fastest for [1,2,1 and [1,u,1] of order n < 20

and slowest for all matrices of order 50 < n < 525. TREEQL is fastest for W +

of all orders and for [1,2,1] of order20 < n < 60 due to moderate ([1,2,1]) and

heavy (W,) deflation. The bottom graphs in Figures 1-3 show the different

computation times for matrix orders 60 < n < 512. For n = 512, TREEQL

is about 2 to 40 times faster than TQL2, and B/Ill is about eight times faster

than TQL2.

Because the degree of deflation and the grouping of eigenvalues are rarely

known in advance, it is generally not possible to select the fastest serial method

for a given problem. In all of our experiments, however, B/III is much faster

than TQL2 and equally accurate. For larger matrix orders, B/Ill is fastest for

light to medium deflation, while TREEQL is fastest for heavy deflation.

7 A Statistical Analysis of Inverse Iteration

The preceding sections experimentally establish the design choices for an ac-

curate implementation of inverse iteration. Because they rely on the use of

starting vectors with randomly distributed components, we now give a statisti-

cal analysis to explain some of the experimental observations. We proceed as

follows. Section 7.1 states our assumptions; Section 7.2 defines a good eigen-

vector approximation; Section 7.3 determines the expected quality of a random

starting vector and briefly discusses the limitations of the analysis, and Section

7.4 estimates the error in applying the analysis based on starting vectors with

normally distributed components to starting vectors with uniformly distributed
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components. Statistical analyses of methods for computing eigenvalues can be

found, for example, in [9, 16].

7.1 Assumptions

A unit-norm starting vector y = z/1 z 112 is computed from a vector z with

independent random components, each of which has a normal distribution with

mean 0 and variance 1 (normal (0,1)). Such vectors y are uniformly distributed

on the unit n-sphere [8]. Because the distribution of their components is in-

variant under orthogonal transformations, these vectors can be represented in

terms of the orthonormal basis of eigenvectors {u1, u 2 ,.... un } of the symmetric

tridiagonal matrix T:

Y = (771,17 2 ,' . n)T, where y 7rnu,, 11ui [21, 77-1
1=1 i--1

7.2 The Quality of an Approximate Eigenvector

A vector y as defined above is a good approximation to ui if 'h is much larger

than any other component, i.e. if q,2 > I - C2 for some error tolerance 0 <

c < 1. Geometrically, the angle 0i between y and ui satisfies cos 0, _ IV - .

Similarly, y is a good approximation to a linear combination of eigenvectors ul,

Ud if E > 1 - e2 . Because random vectors are uniformly distributed

on the sphere, the probability that y is a good approximation to the linear

combination is just the fraction of the surface area of the sphere defined by all

vectors whose components i, ... .. d satisfy i=I >1 -

The probability that l i. > I - C2 is determined by integrating the

probability density function of the sum '12 between 1 -
2 and 1. If the

component i has a normal (0,1) distribution, then q?= / ' has a

B(l, -"-) distribution, and the sum id 1 has a B(1, 2-A) distribution [81
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with probability density function t-i(1 - t) " i' . The probability that y is a

good approximation to a linear combination of eigenvectors u1 t ud is thus

given in the following theorem:

Theorem 7.1 Let x have independent random components, each with a normal

(0,1) distribution, and let y -- X 112 = (71,..., 77n )T. Given 0 < < 1, the

probability that '=l > 1 - e2

d 1 - C 2

P r 2 17 > C2) >! 1 0 1/ -(1 - tO-''r'dt =_ 1 - al (1

i=1
J (

with cr =

7.3 The Quality of the Starting Vectors

The experiments in Section 4 show that random vectors make good starting

vectors for inverse iteration. It turns out that the random starting vectors

used were linearly independent and not orthogonal to the eigenvectors being

computed. In this section, we demonstrate the practical usefulness of Theorem

7.1 and establish the number of times a random starting vector can be reused

for computing eigenvectors associated with well-separated eigenvalues.

For rapid convergence of an iterate to an eigenvector ui, it is essential that

the starting vector y have a large enough component in the u, direction. The

probability that a component r, is of size at least v"T 7c is given in Theorem

7.1 with d = 1. Table 11 gives t probabilities for matrix orders n = 100,

1000, and 10000 for a range of 1 - e2 values. The integral in Theorem 7.1 was

computed by Gauss-Legendre quadrature with 100 nodes. For n < 10000, the

probability that any one component of y is at least .0001 is no smaller than

1 - 10 - 16, while the probability that any one component is at least .001 is no

36



for n = 100 for n = 1000 for n = 10000
v -C2 P(Irld> V T ) P(1v74 > V/1T ) P(jt7r 1 > v -_C2)
< 10- 4  1.00 (16) 1.00 (16) 1.00 (16)
10- 3  0.99 0.97 0.90
10- 2 0.92 0.76 0.34
10-1 0.34 0 (2) 0 (16)
> .7 0 (16) 0 (16) 0 (16)

Table 11: Lower bounds on the probability that q > I - C2
. Numbers in

parentheses indicate the number of zero decimal places.

smaller than 0.9. The unit two-norm of the starting vector guarantees that not

all components are very small. Recall that a component of size 10- s is suffi-

cient for fast convergence. For a given toleranc- 1 - c2 , the probability bounds

decrease as n increases: as the number of components in a vector increases, the

probability that any one component is large decreases.

Table 4 shows that sets of n randomly generated starting n-vectors tend to be

linearly independent. We call a set of vectors {xi,..., x,} (numerically) linearly

dependent up to a tolerance e > 0 if there exists a set of nonzero coefficients

Q1 , a2. an such that -,1 a? = 1 and I z (12 = I EnI ai , 112 < E. The

following theorem gives an upper bound on the probability that x1,.., Xn are

linearly dependent up to tolerance c.

Theorem 7.2 (Linear Independence of Starting Vectors) Assume that the

vectors xi have independent random components with normal (0,1) distributions

and that z = _"i=1 aix, with a? a = 1. Given e > 0, the probability that

II Z 112 < e is bounded above by

POII Z 112 <5 2n e

Proof: Let xi = (6i, 6i,- ,) , 1 i < n, where each component j, has a

normal (0,1) distribution. If: = xI = (, 2,.,)T with _ a, =
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1 then the component (, - aj~ has a normal (0,1) distribution and

probability density function f(t) = 1 . This gives an upper bound on

P(OI z 10. 0):

P(1 z 11. _< E) = P(Ii < E, 1 < i < n) < ZP(I, 1 :5) = nP(lCiI < 0

Because

P(IIl < 0) = P(-C 5 (1 <5 0 _5 P(Ci <_ 0) - P(Ci <5 -0)

we have

P( < ) <1-0 f()dz - -- f(z)dx = 210 f(z)dz < 2c

Because 11 z 11.. < IN Z 112, P(ll z 11ao e) ! 0 P(ll z 112 c £), and

P(1 Z 112 _ )5 2n

For the computation of eigenvectors ,ssociated with well-separated eigenval-

ues, linear independence of the starting vectors seems less important, and one

could try to use the same random startiag vector for all of them. Given E > 0,

the same starting vector y can be used to compute eigenvectors u1 , ... , Ud if

IN2 > I _ C2 for 1 < i < d. The following theorem shows how the number d of

eigenvectors for which y can be used, depends on the probability p with which

each of the d eigenvectors provides a significant contribution of y.

Theorem 7.3 (Reuse of Starting Vectors) Assume that z has independent

random components with normal (0,I) distributions and that y = x/jjz 12. If

d < L J, then rl > 1 - 2 for 1 < i < d with probability at least p.
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Proof: Let Y =/11 X 112 = (i,..., on)T. Then

P(C 2 1 < i < d) I -P(72 < I- 2 , 1 < i < d)
d

> - 'p(772 < 1-_ 2 ) -= 1- dal,

i1

where the last equality comes from Theorem 7.1. Setting p = 1 - dal gives

d< L J.

Table 12 shows values of d for several choices of VrI -c when n = 100, 1000,

10000: the number of times y can be reused decreases with increasing matrix

order n, for fixed p and E. This echoes the trend observed in Table 11: a long

vector of norm one is less likely to have large components and so is less acceptable

for reuse. From the numerical experiments, we know that a component of size

10 3 suffices for rapid convergence. According to Table 12 all components are

of size 10- 4 for random vectors up to length 1000 with probability 0.99 so that

the same starting vector can be used to compute all eigenvectors for matrices

of order up to n = 10000 with probability 0.99.

Unfortunately, the applicability of our analysis to the results of inverse it-

eration is extremely limited. If z = (T - Ai)-ky = (, . . .,() is the unnor-

malized kth iterate, and no reorthogonalization has taken place, the probability

that any one component (j is larger in magnitude than v1T-7- is [14]

p(~ > 1- 2 -f( - t(1 t) dt.

According to the mean-value theorem for definite integrals, the integral I is

bounded above by (Aj - Aj) 2k(1 - C2). Thus, if ,j is a good approximation to

Aj, then I is small and the probability that zj approximates uj is close to one.

If Aj - j = Aj+ -, j, then zj approximates uj and uj+l with equal probability.

39



p V-i-2 forn=100 forn= 1000 forn =10000
d d d

0.5 < 10- 4  100 1000 10000
10- 3  50 16 5
10-2 6 2 < 1
10-1 <1 <1 <I

0.9 < 10- 4  100 1000 10000
10 - 3  10 3 1
10-2 1 < 1 < 1
10-1 < I < I < 1

0.99 < 10- 1 100 1000 10000
10 - 3  1 < 1 < 1
10-2 < I < 1 < 1

10-1 < 1 < I < I

Table 12: The number of times d a starting vector can be used, when q? > 1 - C2

for I < i < d with probability p.

When Aj and Aj+j are close but not equal, one of the two eigenvectors uj and

uj+l will be approximated better than the other only if (1 - c2 )(Aj - Aj) and

(1 - 2)(Aj+i - j) lie where the integrand f(f) = t-1(1 - t)'I has a large

derivative. Hence, although the effects of additional iterations on the accuracy

can be assessed in terms of the integral 1, a qualitative interpretation seems

difficult.

Just as the statistical analysis falls short in determining the preferred number

of iterations, it fails regarding stopping and reorthogonalization criteria: even

the simplest approximations of distributions become unwieldy [3, 14, 15], and

probability density functions become dependent on the exact eigenvalues and on

other assumptions that are difficult to verify (141. Therefore, we did not extend

the statistical analysis to the iterates.

7.4 Practical Considerations

The preceding statistical analysis qualitatively confirms the experimental ob-

servations regarding the starting vectors in Section 4. However, the analysis is
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;or n = 100 tor n = 1000 for n = 10000
VC 2 P(l7l >_ r-) P(1,7d _> VT - 2) P( I >: V - C2)
_< 10 - 6  1.00 (16) 1.00 (16) 1.00 (16)

10- 5  1.00 (16) 0.99 0.90
10- 4  0.99 0.36 0.34
10- 3  0.92 0.33 0 (16)
10-2 0.34 0 (2) 0 (16)

> 10-1 0 (16) 0 (16) 0 (16)

Table 13: Lower bounds on the probability that 77 > 1- C
2 . Numbers in

parentheses indicate the number of zero decimal places.

based on starting vectors with independent, normally distributed components,

while the experiments were performed with uniformly distributed components

in [-1,1] having some degree of dependence. Thus, the experimental starting vec-

tors of length n are not uniformly distributed on the unit n-sphere but rather on

an n-cube of height 2. Although normally distributed pseudorandom numbers

can be generated at a higher cost than uniform ones [8], we will now show that

uniform random numbers are acceptable substitutes.

The error in applying the analysis to uniformly distributed starting vectors

may be estimated by circumscribing an n-sphere of radius /n about the hy-
percube. A vector y = (71,...*, TI,)T = -n 117U, on this sphere is a good

approximation to a multiple Vf/iuj of the eigenvector ui if jij 2_ N/n (1- 0).

Following the derivation in Section 7.2, the probability of this occurrence is

Pr n(1 - c2) CC t- 1 a-(1 - t) dt.
Jo

Lower bounds for this probability computed by Gauss-Legendre quadrature are

given in Table 13.

The probability of a large component th in the uniform case is not as high as

in the normally distributed case, but components with magnitude 10 - 6 can be

expected with near certainty, and this value still suffices for fast convergence.
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The linear independence of the pseudorandom starting vectors is demonstrated

in Table 4.
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